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Abstract—Lines are significant features enclosing high-level
information in an image. The line segment Detector (LSD)
Algorithm with low error rate is a widely used method to extract
lines in images effectively and accurately. However, the algorithm
on PC performs too costly both in time and resources for the real-
time video processing. This paper provides a fast and resource-
efficient hardware implementation solution for a modified LSD
algorithm on Field Programmable Gate Arrays (FPGA) for
real-time line detection. The task-level pipeline structures are
exploited fully in a stream process mapped to the hardware
architecture free of frame buffer. Our proposed hardware imple-
mentation processes in a stream-in—-stream-out manner with little
consumption of the on-chip block RAM to store intermediate
values. We first employ hardware Gaussian filter and adjust
Canny edge detection to obtain an edge map at single-pixel
width. Then, a novel structure of region growing model based
on dynamic rooted tree is used to detect line segment regions
accurately with a latency of only a few rows of pixels. The low
cost in time, on-chip resources, and power consumption makes
our proposed algorithm suitable for portable real-time streaming
video processing applications using line segment features, such as
Lane departure warning systems. It can also be applied in real-
time machine vision systems that use line segments information
for further recognition or stereo correspondence and many
others. The proposed algorithm is synthesized and tested on
XC7Z020 FPGA with high reliability, accuracy speed, and low
cost in both resources and energy.

Index Terms— Embedded
segment detector, real-time.

image processing, FPGA, line

I. INTRODUCTION

INE detection plays a key role in several embedded

vision application domains. Given that line segments
provide a high-level description of the objects in an image [1],
straight line detection has been widely used in many industrial
applications such as image analysis, smart robots, intelligent
vehicles, pattern recognitions [2], crack detection in materi-
als [3], stereo matching [4] and many others [5]. In a real-
time Lane Departure Warning System [6], the first step is to
detect the lanes fast, accurately and robustly. An FPGA-based
line detection system will save much time, hardware resources
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and energy. For a binocular measurement system, with several
prominent lines in both left and right images extracted suc-
cessfully, stereo correspondence will be made based on line
parameters. This method is more simplified compared with the
traditional methods applying the matching algorithm on the
whole image or part of the image with an empirical parallax
searching range. The line-based matching operation makes full
use of the acquired line information, accelerating the whole
binocular measurement system, which is of vital importance
in real-time visual measurement. Therefore, as a front-end
step of video processing in vision systems, line detection
must be realized with high accuracy and speed on a hardware
platform. Among the existing line detection algorithms, Hough
Transform has remained a standard method for many years
because its theory is complete and its performance is stable
on low-texture pictures. In recent years, many variants of
Hough Transform have emerged [8], [9], both on software
and hardware platforms. However, all Hough-based methods
consume enormous time and resources due to its operations of
transferring points into Hough space onwards and backwards
with many non-linear calculations. Most importantly, under
complex images with much texture, false detection emerges
quickly, usually producing a serious problem for the following
video processing. In summary, Hough-based methods cannot
satisfy the demand of line detection for video processing
with respect to time and accuracy efficiency. Researchers also
developed some other line detection methods. Kahn ef al. [10]
only used gradient orientations rather than magnitude, with a
selection criterion as a final step. Some propositions of such
criteria are exploited by experts [11], [12]. However, false
detection control relative to these classical methods is still
not satisfactory.

To solve the existing problems of the line detection methods,
we urgently need a new line detection method with good line
detection and few false detection. In 2010, the Line Segment
Detector (LSD) algorithm proposed by von Gioi et al. [13]
cumulated most of the advantages of the previous algorithms
without most of their drawbacks. This linear-time line segment
detector requires no parameter tuning and yields good line
detection results as shown in [14]. This algorithm is mainly
composed of five computational steps and a validation step.
In LSD algorithm, level-line angle is owned by each pixel to
produce a “level-line field” which is segmented into connected
regions of pixels called “line support regions”. The pixels that
share the same level-line angle up to a certain tolerance as
shown in Fig. 1 are collected in a certain region. Each line
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Fig. 1. LLA diagram. (a) Level-line field; (b) Line support regions.

support region is a candidate for a line segment which is first
approximated by a rectangle with the region’s principal inertial
axis being used as the rectangle’s main direction. The final line
parameters including start point, end point and line width,
are determined via the corresponding rectangle parameters.
In general, the five computational steps are summarized as
follows: 1) image filtering; 2) gradient and level line angle
computation; 3) gradient pseudo-ordering; 4) region growing;
and 5) rectangular approximation and NFA computation. The
validation step is based on an ‘“a contrario approach” and
the Helmbholtz principle, which states that there should be no
perception (line detection) on an image of noise.

The hardware implementation of the LSD algorithm should
perform a fast and accurate line detection for the whole vision
system. Benefited from FPGA'’s pipeline and parallel features,
it is suitable for many image-processing areas with low cost
in time, on-chip resource and power. The FPGA-based video
processing area includes background subtraction [18], high-
speed face detection [19], stereo vision processing [20], [21],
feature extraction [22] and many others [5], [7]. Video pre-
processing part involving much convolutional processing is
fully implemented on FPGA. Video pixels stream into the
FPGA in raw greyscale data. After processing, line segments’
parameters and the edge map stream out for further processing.

In this paper, based on Grompone’s software-implemented
LSD [14], a modified all-hardware LSD algorithm on FPGA
is first introduced for real-time line extraction. Our focus is
on implementing the line extraction with a fixed low latency,
high accuracy, low cost and a large throughput so that it can
be used in embedded real-time video processing applications.
Directly applying the original LSD algorithm on the dedicated
hardware is difficult because it requires much memory that
exceeds the limits of the FPGA hardware resources. Therefore,
in this paper, we simplify the algorithm to fit the hardware
architecture of the FPGA. We use Gaussian filter to smoothen
the image and Canny detector [15] to detect the pixel-width
edge ahead of the line segment detection. Filtered Canny edge
map is used for line segment region growing with a convo-
lutional dynamic tree architecture. Finally, the regions that
satisfy the line segment criteria will trigger the output signal.
We implement the whole modified algorithm on the FPGA
platform. In order to test the detection effect of our modified
LSD algorithm, the parameters calculated from FPGA are sent
to a personal computer (PC) and then the detected lines are
drawn.

The remainder of this paper is organized as follows:
Section II reviews the software implemented LSD algorithm.
Section III presents the architecture of our modified LSD
hardware implementation. Section IV analyzes the proposed
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algorithm in validation of the detected lines and computa-
tional complexity. Section V shows the experiments and the
assessment of our algorithm. Finally, the paper concludes in
Section VI.

II. DESCRIPTION OF THE LSD ALGORITHM

The LSD algorithm detects the line segment by growing
region of points with aligned Level Line Angle as suggested
in Fig. 1. Each small line represents one pixel with the angle
it stands indicating its LLA (Level Line Angle). The software
implementation of the LSD algorithm can be divided into
five parts called image filtering, gradient computation, gradient
pseudo-ordering, region growing and rectangular approxima-
tion and NFA computation. Details are as follows.

A. Image Filtering

The input image is first filtered with a Gaussian kernel to
avoid aliasing. Images are always affected by noise, Gaussian
down sampling is adopted to filter out the noise and preserve
good line features.

B. Gradient Computation

Given that the LSD algorithm demands the independence
between pixels when conducting gradient computation, equa-
tion (1) shows the 2 x 2 mask adopted by von Gioi et al. [14].
The gradients in x and y directions are calculated as follows.
The Level Line Angle of a pixel is defined as equation (2).

_i+Ly+ie+Ly+ D—ilx, y)—ilx, y+ 1)

2
b,y + D+ Ly+ D—ilx,y)—=ix+1,y)
2

(1

)

LLA = arctan (M)

—gy(x,y)

C. Gradient Pseudo-Ordering

In software implementation of LSD, 1024 bins are created
corresponding to equal gradient magnitude intervals between
the smallest meaningful gradient magnitude and largest value.
The least meaningful gradient value p is determined by the
equation (3). In the original LSD paper, the value is set to
5 accordingly. Pixels with gradient less than p will not be
further processed because they are considered meaningless for
the line segment.

p=—— 3)

D. Region Growing

Connected pixels with similar gradient level line angles
are considered to be elements of one common line-support
region. If the level line angles’ difference value between the
existing region and the neighboring candidate pixel P is in the
range [—z, 7] defined by tolerance angle 7, the pixel will be
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considered as an aligned point and added to this region. The
LLA of the region will be updated according to equation (4).
sin(LLAyegion) +sin(LLAp)
coS(LLAyegion) + cos(LLAp)
LLAsgion + LLA
(9;1eu) _ region P (5)
2

By using trigonometric function formula, we transform (4)
to (5) free of error. Each pixel in the ordered list is compared
with its eight-connected neighbors to grow a line segment

region.

Gnew = arctan(

“)

E. Rectangular Approximation and NFA Test

Every line segment region in the processed image i will
be approximated by a M x N rectangle » covering all its
pixels. The rectangle will be tested to know if the number
of aligned points k on the total number of points of the
rectangle is surprisingly big with respect to the background
model. The region’s Number of False Alarms (NFA) is defined
as equation (6), indicating the expectation of the number
of events that a rectangle r in a random image I has the
same or more aligned points. In equation (6), N, is the total
number of tests of considered rectangles. P, is the probability
of the event on the a contrario model H,, which is a noise
model for the image gradient orientation.

NFA = Nyegs - Prylk (r, 1) > k (1, i)] ©)
FA = (NM)>/? S ”.)/1— =i p=2_
N (NM)/%y ;{(1 Pra-pp=—

NFA is calculated as equation (7), where the precision
value p is the probability that a pixel on Hy is an aligned point.
7 is the tolerance angle and 7 is the angle in the radian system.
y is the number that different precision values p potentially
tried. When the rectangle satisfies NFA < ¢, it passes the
test. The threshold ¢ is set to 1, meaning an acceptance of
one false detection per image on average. If a line region’s
rectangle passes the NFA test and has aligned point density
greater than the threshold, it will be counted as a line segment.
The rectangle’s start and end points will be used to represent
the line.

III. PROPOSED HARDWARE ARCHITECTURE OF LSD

In this section, our hardware implementation of modified
LSD is introduced in detail.

A. Overall System Architecture

Our modified LSD algorithm mainly consists of six
modules: Gaussian filtering, gradient and LLA computation,
Non-Maximum Suppression, double threshold connection,
mirror and region growing. Canny edge detector is well
known for low error rate, good location of edge points and
single edge point response, which can help FPGA eliminate
massive background pixels with a single-point response in
the edge. We adopt the Canny detector to simplify line
segment detection. In our implementation, regions grown
from single-pixel width edge map will always satisfy the NFA
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Fig. 2. Overall architecture of the proposed modified LSD algorithm.

and aligned points’ density requirement, which is proven
in Section IV. So the rectangle approximation and NFA
computation part is abandoned in our modified algorithm
on the FPGA. Fig. 2 shows fully pipelined tasks mapped to
FPGA’s architecture. Data level parallelism is within each
task. Tasks in different level are finished in a pipeline manner,
with convolutional window bringing about only a few rows
of clocks delay between them.

B. Gaussian Filtering Module

First we put forward a structure of FPGA convolution
module “Sliding Convolutional Window”. FPGA with parallel
structure performs best in convolutional applications. The
convolution is done by a window sliding the image from the
first column of the first row until the last column of the last
row to process every pixel with its neighborhood to conduct
the convolutional result. The image pixels go in as a stream
from the first point in the upper left to the last one in the lower
right. Fig. 3 shows the architecture and direction of a 3-by-3
“Sliding Convolutional Window”.

Gaussian filtering is suitable for real-time image processing
to reduce the noise influence [23]. To preserve the image
brightness, the Gaussian kernel coefficients are normalized as
equation (8). In our modified LSD algorithm, we use a 5 x 5
template described in Fig. 4(a). Coefficients are the theoretical
values multiplied by a factor of 256. This avoids problems
in the division operation on the FPGA. Every pixel is first
represented by 17 bits, with the lower eight bits representing
the fractional part and the first bit denoting the sign of the
value. The coefficients of 1-D kernel can be computed by
equation (9). In our paper, we choose ¢ as 1 [23], and the
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Fig. 4. Gaussian module. (a) Gaussian blur template. (b) Hardware structure
of Gaussian convolution.

coefficients are shown in Fig. 4. After the filtering process,
only the higher nine bits of each pixel are used to the
following modules for further processing while the lower bits
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To avoid wasting limited resources on the FPGA board,
we divide the one-step convolution process into two using a
pattern to convolute the columns first and then the rows. Since
the symmetrical columns and rows must be multiplied by the
same coefficient, they are added together first and then the sum
is multiplied. The number of the multipliers is thus reduced
to 6 from the original 25 as shown in Fig. 4(b).

C. Gradient and LLA Computation Module

Gradient computation is conducted after the Gaussian fil-
tering process. The LSD algorithm adopts a 2-by-2 gradient
computation masks shown in Fig. 5.

After the gradients of x and y axes of a pixel are calculated,
an ABS module is used to calculate the absolute value and sign
of gradients in both axes. A register stores a flag s indicating
if the two gradients have different signs. In our proposed
hardware implementation, the computation of square root is
replaced by the absolute operation in equation (10). According
to the original LSD paper, pixels with gradient smaller than
p =5 will be assigned 0 gradient.

G(X, y) = |gx(xs y)l + |gy(xs y)|

For hardware platform, deploying the arctangent operation
to calculate the level line angle using CORDIC method costs
too much time and resources. Therefore, in our optimized algo-
rithm, we apply a “Gradient Angle Pseudo-ordering” (GAP)
module to quantize the gradient directions within [0, 7 ] range.
As Fig. 6(a) shows, we use multiplication and comparison
to substitute dividing operation due to their better speed and
accuracy performance on FPGA. We first quantize all the
LLAs into eight bins to have a 3-bit gradient angle for each
point. As shown in Fig. 6(b), the eight bins are then merged
into four bins because the 2-bit LLAs are used for further
processing. It means that we choose the tolerance angle

(10)
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mechanism.

as 7, which is a balance between a good detection rate and
a low error rate. In addition, to avoid the binning problem
that some lines with angles at the borders of those bins
are hard to be detected, a dual-division method is adopted.
We shift the borders of one division method by half the size
of the interval, ensuring that the angles on the border of one
division method are on the center of another division as shown
in Fig. 6(b). Then, each pixel is with two quantized LLAs
based on two different division methods. In the last module of
region growing, two identical modules are processing different
quantized gradient angle data. Detailed experiment results on
the division methods are shown in Section V.

D. Non-Maximum Suppression Module

A highly recognized property of canny edge detector is its
low error rate. Non-Maximum Suppression module is the key
to detecting edges more accurately by eliminating meaningless
points on the rim of an edge while preserving the most
significant candidate points. To obtain better line segment
detection on the hardware platform, edges with a single-pixel
width should be detected correctly.

A local maximum in the edge direction is a better candidate
for edge point than the neighboring pixels. In this module,
we compare the central pixel with the nearby two pixels chosen
according to its gradient direction. If it is smaller than any of
them, it will not be eligible for the edge; thus, its gradient will
be set to 0. Only the central point being the local maximum
will retain its gradient value. The strict NMS module is imple-
mented as shown in Fig. 7. The output gradient magnitude
and direction of the last module are denoted with G and a
number indicating its location in the convolutional pattern.
The mechanism of choosing neighboring points according to
the 3-bit gradient direction is depicted in detail in Fig. 7.

E. Double Threshold Connection Module

The output of NMS still has many fake edge points or bro-
ken edges. To obtain the final Canny edge map, a double
threshold connection module is used to connect the edge
points as shown in Fig. 8(a). The low threshold can filter out
the noisy or weak edge pixels, while the high threshold can
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Fig. 7. Non-Maximum Suppression module.
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Fig. 8. (a) Double threshold connection module diagram. (b) Convolutional
Heterogeneous Windows module.

determine the strong edge points. Therefore, there are three
situations for a pixel to handle as follows.

1) Gradient Higher Than the High Threshold: These points
are regarded as strong edge points and are accepted as one of
the edge points immediately. Its gradient magnitude will be
set to 255 and its gradient angle holds.

2) Gradient Lower Than the Low Threshold: These points
are regarded as noise output or fake edges, and are not counted
as part of an edge. We set its gradient magnitude to O and its
gradient angle value to 4, meaning invalid.

3) Gradient Value in Between: These points are vague,
which require one more validation step to determine their
status. If they are connected to edge points, they belong to
a certain edge and then treated like strong edge points. Else,
if none of the eight-connected neighboring points is an edge
point, it will be regarded as a weak edge point and treated as
noise output.

To lower the error rate, we use a “convolutional hetero-
geneous windows” (CHW) to deal with the vague pixels.
Heterogeneous character means that pixels in the windows
come from different source. Given that their upper and left
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neighboring pixels are post-processed, we use the results of
this module to compose the left and upper part of the windows.
Thus, these four points are from the final edge map instead of
the prior NMS module as shown in Fig. 8(b). Post-processed
points are darkened and the arrows’ direction shows the flow
of the data stream.

F. Image Mirror Module

Our region growing method follows the direction the FPGA
scans through the whole image, which is from up to down
and left to right as shown in Fig. 3. However, we should scan
the line segment region in the direction of how they grow.
From up to down, the right lanes on Fig. 3 grow from left
to right while those left and central lanes grow from right
to left. Detecting these lines requires processing in a contrary
direction of scanning. To detect these lines, a mirroring module
is applied to implement a scanning direction contrary to
growing direction of the column number as shown in Fig. 9.
After the image mirror module, the mirrored and original edge
maps are processed simultaneously to obtain the line detection
results.

A simple dual port Block RAM is suitable for applications
with customized writing and reading memory because writing
and reading are accessed via separate ports. Therefore, we use
a specified controlled dual port BRAM to implement the
mirror module. Before an eligible line segment triggers the
output, its pixel coordinates are flipped in the horizon to
fit the original pixel map. However, this mirror operation
certainly brings one row of extra latency due to its First-In-
Last-Out (FILO) manner.

G. Region Growing Module

After the Canny edge detector module, we have an edge
map to do line segment region growing to detect lines as
shown in Fig. 10. A line segment is a group of aligned points
with gradient angles near the LLA of the region. A line
segment is represented by a tree with each point being a
node. We use a novel dynamic rooted tree to grow and record
the region information. This information includes an 8-bit
counter to count the number of region points, 3-bit region
LLA and two 19-bit addresses denoting the starting point and
ending point, respectively. Basically R [i] records the region
information on the column label [i] until the last row of the
currently processing pixel. An FIFO is used to store region
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Fig. 10. Diagram of region growing convolution operation. (a) Convolutional
region growing direction and pattern. (b) Region growing chart.

information. The CHW is again applied as shown in the right
side of Fig. 10(a).

The gradient angle of the central point will be compared
with its neighboring regions and points using the “and”
operation. Given that our gradient angle is quantized with
a 2-bit number, a positive output denotes that their LLAS’
absolute difference is less than the angle tolerance threshold,
resulting in aligned angles. Otherwise they are not aligned.
The precedent regions (PR) are then compared using the
region refreshing test to determine how they are refreshed. The
region finish test is done by comparing with the succeeding
points (SP) to judge if a region has ended growing. Both tests
are done in the first rising edge, ensuring a correct refreshing
of region R [i]. The growing process shown in Fig. 10 mainly
deals with three situations.

1) Region Growing: When point P[j,i] has an aligned
direction with the line segment tree R [i] exactly on its
position, the region R [i] grows downwards. The root keeps
its location while enclosing one more node. Thus R [i] will be
updated with the number counter plus one and the end point
is set to the instant address.

When an edge point P[j, i] does not have an aligned region
previously, it will initialize a region R [i] with its address as
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the starting point, its direction as the region LLA and the
counter will be set to one. A new tree starts from the point.

2) Region Merge: When a point and its left region R [i — 1]
share the same LLA direction, the left region will be merged.
Thus the root of the left tree is transferred to the right. The
right tree R [i] will merge with the left tree by inheriting its
information, growing the point as a node and then resetting the
left region. This situation turns a merge-flag register m ylag to
positive and an all-zero number representing the tree located
in [i — 1] is going to be stacked into the FIFO. Therefore,
the FIFO will be renewed in a clock’s latency because regions
might be merged by its right point and thus be reset. However,
the next time to grow R[i — 1] is a row of clocks later,
meaning the one-clock latency will not result in any delay
of the successive process.

3) Region Reset: If none of the succeeding points (SP)
aligns with the current region, the region cannot grow anymore
and is sent to the output module. Refreshed R [i] value will
be given to output module and R [i] is set to all-zero. If the
R [i] has enough number of points, its information including
starting point and ending point addresses and counter will be
output to PC through a USB port. Fig. 11 depicts the region
FIFO refreshing and output module.

After processing the whole edge map by growing the
regions’ dynamic rooted trees, the hardware finishes the line
segment detection.

IV. ALGORITHM ANALYSIS

This section proves that the lines detected by our modified
hardware implemented LSD algorithm are meaningful in the
original software implemented LSD’s definition. Furthermore,
we make a computational complexity analysis of our proposed
algorithm and compare it with that of the original LSD.

A. Validation of Line Segment Region

In our proposed implementation, we eliminate the rectangle
approximation and NFA computation modules because they
require serial float-point processing that can hardly be mapped
to hardware’s parallel architecture. We will prove that the
detected lines are still valid in the original definition of LSD.

First a region grown by our algorithm is noted as a set of
n points, whose LLA angles are within the same angle range.

m m+1
{Pl,Pz’.Pn},aIE[Zﬂ:,T
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The line segment region is grown from a one-pixel width
edge map, as shown in Fig. 10(a). Then, we use a 1 x n
rectangle to approximate the region. According to original
LSD, its regional LLA angle will be updated as equation (4),
which equals to equation (5). From mathematical induction
we know that the region’s LLA angle o9 must be within the
same range as all the region points. Thus every region point’s
absolute angle difference with a¢ is smaller than 7, making
it an aligned point. Therefore we have N = k = n for every
detected region, whose aligned point density will be 1. It is
greater than the original density threshold 0.7.

The NFA of the totally aligned region is computed as
follows.

n

NFA(m)=(NM)?y->" (’]’) pl (1=py =n2. (%)
Jj=k

By analyzing its derivative function, we know the maximum
value is NFA(4) = 0.125. It is smaller than ¢ = 1. Therefore,
we conclude that the detected line segment regions always
meet the NFA and aligned point density requirement in the
original LSD.

In general, we process the edge map in single-pixel width
by a strict region growing method requiring the aligned
points’ density to be one, which ensures a valid line detection
performance with low error rate.

B. Computational Complexity Analysis

In our proposed implementation, we exploit the massively
parallel architecture of the hardware by operating all the pixels
in the same convolutional manner within each module. For the
Gaussian blur module, each pixel goes through a same number
of multiplication and adding operations to obtain the smooth
grayscale value. Then, gradient computation module calculates
the magnitude and pseudo-orders the angle of every pixel in
linear time. NMS and double threshold connection modules
operate every pixel’s gradient identically to determine an edge
map. Finally, the image mirror and region growing modules
also process every point in the same mechanism.

In summary, processing every pixel in an identical manner
makes our algorithm at a computational complexity of O(N)
where N is the total number of pixels in the image.

The original LSD algorithm implementation [14] also has an
execution time proportional to N. However, it requires serial
float-point processing modules of rectangle approximation and
NFA computation, which also might involves recursive oper-
ation as some failing line segment region needs re-processing
with automatically changed parameters. Such modules are
eliminated in our system, making our proposed method much
less computational complex. Computation time is thus reduced
greatly on hardware with much slower clock rate. Detailed
analysis of comparison is presented on Section V.

V. TEST AND ASSESSMENT

In this section, the experimental results and assessment are
presented in two aspects. First, both noise-free drawn images
and noisy life image are experimented to verify the reliability
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Experiments on Binning Problem
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Fig. 12.  Bar chart of detection rate on experiments of binning problem.

and accuracy of our modified LSD algorithm Second, the con-
sumption of hardware resources is evaluated, especially on
the massive use of BRAMs as row buffers. The overall time
latency analysis showing real-time processing ability is given
in details.

A. Reliability and Accuracy

1) Noise-Free Drawn Lines Detection Test: First, to test the
performance of our method on the binning problem, we have
drawn 1800 lines respectively with angles in [0, 180°] with
an interval of 0.1° to test our algorithm’s line detection rate.
Four Gaussian blur kernels are tried while each of them is
tested with both single-division and dual-division gradient
LLA pseudo-ordering method mentioned in Section III. The
detection rate is calculated by the number of detected lines
divided by 1800.

The line detection rate results are shown in Fig. 12. The
dual-division method enhances the detection rate greatly as
it makes up for those lines with angles near the border of
the LLA bins in the single-division situation. The results of
the dual-division method also show that Gaussian blurred
images with a smooth edge obtain better detection. With
the dual-division method and a Gaussian kernel size of five,
the detection rate reaches 100%. So in the implementation,
we choose the Gaussian kernel size as five and use a dual-
division method to obtain a good detection rate.

To test the reliability and accuracy of our modified LSD
algorithm implemented on hardware, we compare our result
with that of the software implementation of the original LSD.
A total of 16 lines are drawn in an image with line angles
spread in an average of 360° with an interval of 22.5°.
To observe the line detection result, the detected parameters
are transferred to PC via USB port and then the detected lines
are drawn on an empty image with the same size as the input
image. The comparison results are shown in Fig. 13.

Our adjusted hardware Canny detector provides a good
result of the edge map with all the line segments well con-
nected and accurately located. Given that our canny implemen-
tation performs a strict non-maximum suppression, Fig. 13(e)
shows that only the most significant edge points along the
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edge direction are preserved. Although our hardware Canny
detection results contain minor noisy points, those isolated
points are prevented from having an aligned LLA with its
neighbouring points by the NMS module. Therefore the noisy
outputs will not affect our line detection.

Software LSD is set without any parameter tuning so that it
is applicable for general purpose to have a good line detection.
However, a fixed parameter can result in many redundant
line detections on non-linear edges in complex images. For
example, minimum region size is the threshold of number of
points in a line segment region. It is calculated according
to the image’s size in the original LSD. This results in a
small threshold taking great number of insignificant lines into
the result. As shown in Fig. 13(c), arcs in the images will
be counted as lines and are not removable. In our hardware
implementation, we could set the minimum region size to
control the results with reasonable line detections as shown
in Fig. 13(f).

To test further the accuracy of our modified LSD,
the detected parameters are compared with the software
results. The error rates are defined as equation (11) (12). The
error rates along the x and y axes and in general are calculated.

valuep,, —value
error = Henw Hesw (11)
valueg,,
(X0 — xsw)z + (th - ysw)2
€rrorgeneral = B B (12)
5w t Ysw

The test errors of the drawn lines’ parameters are shown
in Fig. 14. From the statistics we can see that the relative error
is always less than 2.5%. The typical value of a general error
rate is around 1%, which shows a high accuracy of hardware
implementation. With regard to all angles of lines, the error is
typically small and acceptable.

2) Noisy Road Lines Detection Test: On the system of Lane
Departure Warning System, it is crucial to detect the lanes
fast and accurately at first. Our fast and resource-efficient
hardware implementation of LSD algorithm can be applied
in these systems because lanes are long and straight in most
cases. In addition, our implementation uses very little energy
to detect line segments. Hence it is ideal to embed our design
on the vehicle. We take the image of the road scene from the
car to test our algorithm shown in Fig. 15.

The same parameters are adopted in our hardware Gaussian
filter and canny detector as those of the software. The software
result has a smooth edge map while it fails to get rid of
many meaningless edge points due to its exhausted iterative
method of double threshold connection. Our adjusted hardware
implementation only scans the image once and preserves
those strongest edges. It is suitable for later region growing
algorithm because long and straight lanes remained significant
in the edge map while their angle map is also well aligned.
At the same time, the pixels on the background are obviously
not aligned.

The software LSD’s minimum region size threshold takes
many insignificant lines into result shown in Fig. 15(e). This
redundant result can be hazardous for successive processing in
practical applications. Our algorithm has a flexible minimum
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Fig. 13. Comparison results on image with drawn lines from 16 different angles. (a) Original image with 16 lines. (b) Software Canny detection. (c) Software
LSD detection result. (d) Hardware LLA gradient angles map. (¢) Hardware Canny detection edge map. (f) Hardware LSD line detection result.
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Fig. 14. Relative error rate diagram.

region size threshold set by users to help dedicated hardware
provide better line detection results in specific applications.
For example, lane detection results with higher threshold are
shown in Fig. 15(d).

The results show that all straight lanes are detected correctly.
For a binocular vision system, we can use camera intrinsics
and extrinsic matrix to further reconstruct the road from the
lane detection results. Thus, the position of the camera can
be located to identify correctly if the vehicle departs from the
lanes.

We also conducted experiments on the images from the orig-
inal LSD paper using the same minimum region size threshold
as software LSD. The results are shown in Fig. 16. Both noise-
free and noisy images are performed with similar line detection

TABLE I
FPGA IMPLEMENTATION RESOURCE CONSUMPTION

Resource Categories Used Available Utilization
Flip-flops 4810 106400 4.52%
Slice LUTs 4437 53200 8.34%
Memory LUTs 378 17400 2.17%
DSP blocks 8! 220 3.64 %

'DSP blocks are used to do multiplications more accurately and efficiently.

results while our proposed algorithm provides with less line
detection as we analysed in Section IV. Furthermore, in the
image of chairs, the original LSD detects some words on the
labels on the back of the chair as lines, which are errors of
line detection. In the result of our implementation, those words
are not detected as lines, which indicates a lower error rate
compared with the original LSD algorithm due to our stricter
region growing mechanism.

In general, under the same setting of minimum region size,
our method could further reduce the error detection rate while
preserve most of the significant lines.

B. Resource and Time Consumption Analysis

The architecture was successfully synthesized, placed and
routed with the designing tool Vivado 15.2 software, Xilinx.
Table I shows the important hardware resources usages on
platform XC7Z020 FPGA.

1) Resources Consumption Analysis: The memory usage is
described in Table II. The BRAMSs serve as FIFOs to buffer the
intermediate values of rows in the convolutional processing.
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Columns from left to right are original images, LSD software results, and the
proposed modified LSD results.

Comparison results on test images from the original LSD paper.

The size of the convolutional kernel and the data width in each
module determine the number of utilized BRAMs. In total,
less than 15% of the FPGA’s on-chip BRAM is used, with the
remaining memory having enough space for an image buffer
for further processing.

In general, the streaming process of convolutions requires
only row buffers, making our method resource-efficient.

2) Time and Power Consumption Analysis: In this paper,
FPGA runs at a clock of 100MHz generated from digital clock
managers inside the chip provided by Xilinx for the whole
system. With the task-level fully pipelined architecture and

TABLE 11
MEMORY USAGE

Buffer depth 1024
Gaussian filtering 90Kb
Gradient

computation & 54Kb

pseudo-ordering
Memory Usage NMS S4Kb
Double Threshold 54Kb
Mirror 18Kb
Region growing 360Kb

Total memory usage 630Kb/5040Kb

data-level parallelism inside each module, time consumption
is determined by the longest sub-module. For the whole
system, time consumption is the sum of the main pipeline
modules. In our modified LSD based line detection, time
consumption is directly proportional to the size of the input
image regardless of the exact number of lines. According to
the time consumption analysis in Fig. 17 we can calculate the
Initial Latency (IL) as well as total Processing Latency (PL)
of hardware LSD by equation (13) (14). The IL is the time
delay between a pixel entering the system and coming out
after all the processing finished. The PL is the latency from
the first pixel that enters the hardware until the last pixel
finishes processing. It indicates the longest period of the whole
algorithm. We use W as the image’s width and H to denote
height.

IL =214+ 7T*W
PL =W*H 4+ Q21+ T'W)

13)
(14)
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TABLE IIT The authors would also like to thank Key laboratory of
FPGA IMPLEMENTATION POWER CONSUMPTION* Precision Opto-mechatronics Technology for providing exper-
iment equipment for our work. Fugiang Zhou and Yu Cao
Resource CPU CPU FPGA FPGA : :
) . contributed equally to this paper.
(640x480) Time(ms) Power(mJ) Time(ms) Power(mlJ) q y pap
Drawn lines 103.5 4657 3.12 1.43
Road image 109 4905 3.12 1.43 REFERENCES

*CPU runs at a clock rate of 3.5 GHz and FPGA’s clock rate is 100MHz.

In the implementation of our modified LSD, we take images
in the size of 640 x 480 for example. The PL is 3.12ms satisfy-
ing the real-time video processing speed requirement. The IL
is only 45 s, meaning that the line segment detection finishes
almost the same time after the image scanned only once.
Considering the power consumption, we have FPGA running
at dynamic 0.263W and static 0.194W power consumption.
In total its power consumption is 0.457W, approximately 1%
of that of the CPU. Software implementation is on a 45W CPU
to compare the time and power consumption in Table III.

From Table III, we can summarize as follows. On account
of the parallel architecture of FPGA and the simplification of
the original LSD algorithm, the processing time is shortened
significantly, from the approximately 100ms on PC to the
constant 3.12ms on FPGA regardless of the image’s texture.
This speed is capable of processing a video stream of a VGA
resolution at a frame rate faster than 100 per second.

VI. CONCLUSION

The LSD algorithm gains a great reputation in image
line extraction due to its good detection rate and low error
rate. It has been implemented in the OpenCV library and
is used widely dealing with lines. In this paper, a modified
fast and resource-efficient hardware LSD algorithm on FPGA
with task-level fully pipeline architecture is first implemented
for real-time video processing systems. First, we deploy the
Gaussian blur to smoothen the image to reduce noise. Second,
an adjusted strict Canny edge detector is used to obtain the
edge map with single pixel width. Then we apply the mirror
module to detect lines of all directions. Finally, a dynamic
rooted tree structure is first employed to do line segment region
grow. The combination with canny edge detector enables
FPGA to detect line segments in sequence with only one scan
of the image free of any frame buffer. Furthermore, it uses
a small number of row FIFOs to store intermediate values,
saving much on-chip resources and time. Our modified LSD
performs effectively with good reliability, high accuracy, low
cost on time, power and on-chip resources. These attributes
make our proposed algorithm suitable for real-time video
processing systems dealing with line segments like the LDWS,
binocular vision systems and many others.
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