
Minimal Non-linear Camera Pose Estimation Method Using Lines for SLAM
Applications

Yu Cao
Beihang University, China
cqcy1208@buaa.edu.cn

Haishu Tan
Foshan University, China

tanhs@163.com

Fuqiang Zhou
Beihang University, China

zfq@buaa.edu.cn

Abstract

In order to continuously estimate camera pose with
known line features correspondences between 3D lines in
the real world and 2D lines in the image plane, we present a
novel non-linear optimization method utilizing Plücker co-
ordinates and a minimal representation of rigid motion. In-
spired by the bundle adjustment pose estimation method, we
use a minimal 6 Degree of Freedom (DoF) vector to denote
rigid motion based on the Lie Algebra and Lie group the-
ory. For the first time, we deduct the Jacobian matrix of the
line’s Plücker coordinates over the motion vector. Thus we
are able to optimize the reprojection error to the minimal
to find the solution with all the orthogonormality contraints
fully considered. Benefited from the use of non-redundant
representation of 6-DoF motion, our method requires only
at least 3 lines correspondences, which makes our method
applicable with limited matching pairs. Experiments in both
simulation and real world images show that our method is
fast, accurate, robust and suitable for motion-only Bundle
Adjustment pose estimation in SLAM applications.

1. Introduction

Camera pose estimation is the key task in many computer

vision applications such as Structure from Motion(SfM)

[1–3], Robot Localization [4] and Visual Simultaneously

Locating And Mapping (VSLAM) [5–7]. To estimate the

camera pose, the known correspondences of the real world

features with their projections into the image plane are ul-

tized. Features can be in the form of points or lines. Pose

estimation using point features are called PnP problem. It

is well solved by the Effective Perspective-n-Points (EPnP)

method proposed by Lepetit et al. [8]. Lines are signifi-

cant features enclosing high-level information in an image,

which occur frequently in real world images [9]. Nowadays,

lines features are learned progressively to estimate cam-

era pose, which is the so-called Perspective-n-Lines (PnL)

problem shown in Fig.1 . 3D lines in world frame are first

FW

�

�

�

�

�

�

l
v

FC

��

��

��

�

�

K

Figure 1. Perspective-n-Lines (PnL) problem finding a pose to val-

idate 3D-2D line matches

transformed to the camera frame. Then the lines are mapped

to image’s 2D lines. The solution of the PnL problem is

the 6 DoF pose estimation which reprojects the lines in 3D

space onto the 2D image plane properly.

Recently, remarkable progress has been made in the fol-

lowing 3 kinds of solutions to the PnL problem, namely Di-

rect Linear Transform (DLT), polynomial solution and iter-

ative solution.

Direct Linear Transform is the intuitive way to solve

the problem as it directly solve the reprojection equations

with Singular Value Decomposition (SVD). Then the solved

variables are used to get an estimated pose. P?ibyl et al. has

well implemented the DLT method based on lines’ Plcker

coordinates [10]. However, such method treats the 9 vari-

ables in the rotation matrix and the 3 variables in the transla-

tion vector as independent variables. This ignores the non-

linear orthonormal constraints of the variables. For exam-

ple, the rotation matrix has 3 unit vectors orthogonal to each

other. Therefore, a polynomial solution to the PnL prob-

lem merges the projection functions with the orthonormal-

947

2018 IEEE Winter Conference on Applications of Computer Vision

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00109

ity constraints to form high-order equations. Usually, many

more coefficients are introduced to help solve the high-order

equations [11]. Xu et al. have made a complete analysis of

a series of polynomial solutions [12]. Both DLT and poly-

nomial methods parameterized the rigid motion with a re-

dundant representation of at least 12 variables with multi-

ple solutions. Additional validation step is compulsory to

determine the final pose.

Another solution is to use non-linear method which iter-

ates to minimize the reprojection error. Iterative method

dates back to 1994 when Kumar proposed a non-linear

optimization method optimizing the distances between the

points and the reprojected image lines [13]. Nevertheless,

the method treated a 3D line as 2 endpoints, which added

the DoF since two 3D points have 6 DoF while a 3D line

has 4 DoF. And the paper didn’t figure out a way to strictly

apply the gradient descendent method. What’s more, to the

best of our knowledge, existing iterative solutions still re-

quire a SVD [14]. And they don’t fully utilize the orthonor-

mality constraints lay in the Lie Group. Thereafter, we de-

velop a complete iterative method that parameterizes rigid

motion representation with a minimal 6 DoF vector in Lie

Algebra to fully meet the orthonormality constraints [15].

The difficulty lies in how to calculate the incremental up-

date and how to update the estimation. Motion-only Bundle

Adjustment method coping with Perspective n Points (PnP)

problem has been applied widely and successfully in the

SLAM field [16]. The most successful open-source ORB-

SLAM system [17] also applies this method to achieve a

good pose estimation. It inspired us to model the whole

system in the Lie Group instead of Euclidean space to solve

the iterative problem.

In general, the main contribution of this paper is as fol-

lows.

1) We analyze the partial derivative (Jacobian matrix) of

the lines’ reprojection error over the 6-DoF motion vector in

the tangent space of Lie Group. This creates the foundation

for iterative method to update the estimation.

2) A new non-linear pose estimation method based on

line features is proposed, which works with even only 3

pairs of lines’ correspondences. The framework is very suit-

able for continuously updating the pose of a camera, which

is usually the case in the Visual SLAM applications. Exper-

iments on synthetic data and real world images have proven

the accuracy and robustness of our algorithm.

The remainder of this paper is organized as follows: Sec-

tion 2 presents the notations and the coordinates in our

work. Section 3 introduces the math model and our itera-

tive method in detail. Section 4 shows the experiments and

the analysis of the results. At last, Section 5 concludes the

paper.

2. Notation and Coordinates Systems
Lines in 3D space are represented by the homogeneous

plücker coordinates, as the way introduced by P?ibyl et

al. [18]. As Fig.2 depicts, two endpoints in homogeneous

A(ax, ay, az, aw) and B(ax, ay, az, aw) makes a line l.
The plücker coordinates consist of two 3-by-1 vectors u
and v. Fig.2 shows that u is the normal vector of the plane
formed by the origin of the frame and the line. And v is the
vector indicating the lines direction. They are calculated as

equation (1) accordingly. Also constraint (2) that normal

vector and direction vector are perpendicular must be satis-

fied, making the line of 4 DoF.

l =

[
u
v

]
=

[
(ax, ay, az)

� × (bx, by, bz)
�

aw(bx, by, bz)
� − bw(ax, ay, az)

�

]
(1)

u�v = 0 (2)

FW

�

�

�

�

�

�

l

v

u

l�

FC

A

B

Figure 2. 3D line representation in Plücker coordinates

Then, the minimal representation of the cameras rigid

motion is introduced. The camera pose is the rigid motion

from the reference world frame Fw to the camera frame

Fc. The rigid motion comprises of 3 DoF rotation and 3
DoF translation. Equation (3) shows the coordinates trans-

formation by the motion matrix Twc. R is the 3-by-3 ro-

tation matrix indicating the camera’s orientation. And t is
the 3-by-1 translation vector showing the 3D position of the

camera. The tilde symbolizes homogeneous cooridnate in

the form of (x, y, z, 1)�.

P̃c = TwcP̃w,Twc =

[
R t
0� 1

]
(3)

However, the rigid motion has only 6 DoF, meaning the

12 parameters of matrix T has 6 redundant degrees of free-
dom. So a Lie Algebra se3 representation of the rigid mo-
tion in exact 6 DoF as a vector ξ is used. In equation (4), ρ
denotes the 3-by-1 vector indicating translation while θ is

948

the 3-by-1 vector concerning rotation. The 6D vector is pro-

jected to the matrix T through 2 steps. First, the hat function
(·∧) transforms the 6 DoF vector into a 4-by-4 matrix. The
[θ]× is the 3-by-3 skew-symmetric matrix constructed from
vector θ. Then the result is projected to the rigid motion
matrix using an exponential function shown in equation (5).

In the projection equations, Gi is the i-th generator matrix
in the tangent space [16].

[ξ]∧ =

[
ρ
θ

]∧
=

[
[θ]× ρ
0� 1

]
=

∑
i

ξiGi (4)

T (ξ) = exp([ξ]∧) =

[
R(ξ) t(ξ)
0� 0

]
(5)

As Fig.2 shows, the 3D lines can be transformed from the

world frame to the camera frame through the line motion

projection matrix defined as equations (6,7). In the equa-

tions, ξ is the 6D representation of the rigid camera pose.
R and t are its associated rotation matrix and translation
vector. The upper 3-by-6 matrix Pu projects the line coor-
dinates to the normal vector uc while the Pv brings about
the new vc in the camera coordinates.

lc =

[
uc
vc

]
=

[
R [t]×R
0� R

] [
uw
vw

]
(6)

lc = P (ξ)lw =

[
Pu
Pv

]
lw (7)

At last, the pinhole camera model is used to map the

3D lines onto the 2D image plane. From the geometry of

computer vision [19] we know that the image line is deter-

mined by the normal vector uc and the camera intrinsics
as equations(8). K is the camera intrinsic parameters ma-

trix. Since the homogeneous coordinates equation is up to

scale, we use projection function (9) to deal with equation

free of scale factor. The non-tilde l is in the projected non-
homogeneous coordinates.

l̃i ∼=K−�uc (8)

li = proj(l̃i) =
1

l̃i(3)

[
l̃i(1)

l̃i(2)

]
(9)

3. Non-linear optimization method
Now we can state our optimization method as follows.

Given a set of 2D lines li on the image plane and their cor-
responding 3D line lw in world coordinates, we find a pose
with which the reprojection error is minimum. A pose is

denoted by a 6 DoF vector ξ, and its line motion projection
matrix is used to propose the prediction of the lines on the

image plane. In our method, we estimate the pose by iter-

atively minimizing the distance, which is the residual error

between the calculated line prediction ľi and its measure-

ment li in the real image as shown in equation (10).

argmin
ξ

∑
‖li − ľi(ξ)‖2 (10)

ľi(ξ) = proj(K−�Pulw) (11)

The iteration is done by a Gauss-Newton method. The

system is approximated by the equation conducted by the

residual error and the Jacobian matrix of the projection

function to the variable ξ. The Gauss-Newton update func-
tion is shown in equation (12). The iteration update of the

6 DoF trivial vector is denoted as ε. And the partial deriva-
tive matrix of the reprojected 2D line over the motion vector

is represented by J . The reprojection of the 3D lines can
be separated in 2 steps. First, the 3D lines represented in

Plücker coordinates in the world frame are transformed to

the camera frame. Then the transformed lines are mapped

to the 2D lines on the image according to the pinhole cam-

era imaging model. Due to the fact that the projected image

lines only concerns the line’s u vector, the chain rule of the
partial derivative is applied to get the final Jacobian matrix

as equation (13). As can be seen clearly, the Jacobian ma-

trix is divided into 2 parts considering the camera model

and the coordinates transformation respectively.

J�Jε = J�(li − ľi(ξ)) (12)

J =
∂ľi
∂ε

=
∂ľi
∂uc

· ∂uc
∂ε

(13)

To begin with, the partial derivative matrix of the cam-

era model mapping can be easily determined through the

linear line projection function (8,9). The partial derivative

of the non-homogeneous 2D line with respect to the normal

vector is shown in equation (13). l̃i is the homogeneous
coordinates of the calculated 2D line.

∂ľi
∂uc

=
1

l̃i(3)

⎡
⎣1 0 − l̃i(1)

l̃i(3)

0 1 − l̃i(2)
l̃i(3)

⎤
⎦K−� (14)

Then the more tricky part is to calculate the Jacobian

of the line coordinates transformation with respect to ε.
To fully consider the orthonormal constraints, the partial

derivative should be within the SE3 space. So simply ex-
pressing the Jacobian by analyzing every element in uc with
respect to every element in ε is definitely not what we want.
Therefore, similar to the expression in the pose estimation

method using points correspondences [16], we define the

Jacobian matrix as equation (15). The derivative is the sen-

sitivity to change of the projected normal vector with re-

spect to the small change in rigid motion vector ε.

∂uc
∂ε

=
∂Pu(ε)P (ξ)lw

∂ε

∣∣∣∣
ε=0

(15)

949

In order to calculate the Jacobian matrix, we need to use

the adjoint map of the Lie Group [15], which is defined as

equations (16). The adjoint map of a vector in se3 has the
identical form with the line motion projection matrix P .
First, we consider the partial derivative with respect to one

element indexed with i in ε, i.e. a small change in the i-th
dimension. In the equation, ei is the i-th basis vector in the 6
DoF Lie Algebra space, whose hat function corresponds to

the i-th basis matrixGi in the tangent space of Lie Group. τ
is a small number. Then the εi is the small change in the i-th
coordinate of the rigid motion vector. In order to simplify,

we use z to denote the adjoint function of the 3D line in
the camera coordinates lc, which is the line’s coordinates
after a projection with a small change of εi. It is worthy to
mention that the R and t in equation (16) comes form the

exponential map of εi defined in Lie Group.

Adεi

∣∣∣∣
εi=τei

=

[
R [t]×R
0� R

]
= P (εi) (16)

z = Adεi(lc) = P (εi)lc (17)

According to the Lie Algebra theory, the hat function of

the adjoint map matrix has a derivative in the form of Lie

Bracket, which is specified in the equation as below. In the

equation, vectorm and n can be arbitrary 6D vectors.

∂

∂τ
(Adτm(n))

∧
∣∣∣∣
τ=0

=m∧n∧ − n∧m∧ (18)

Replacing vectorm and n with εi and lc , we can write
the derivative of the hat matrix of z with respect to one ele-
ment of ε in equation (19). Specifically, the equation is the
changed line coordinates’ derivative over the small change

in one dimension as equation (20) suggests.

∂

∂τ
(z)∧

∣∣∣∣
τ=0

= ε∧i l
∧
c − l∧c ε∧i , ε∧i = Gi (19)

∂

∂τ
(z)∧

∣∣∣∣
τ=0

=
∂

∂τ
(P (τ(ei))lc)

∧
∣∣∣∣
τ=0

(20)

Combining the equations (4,6,20),the derivative of the

hat matrix of z is written in equation (21). Since the projec-
tion of the 2D lines on the image plane is the linear func-

tion of the normal vector, we only notice the part where the

normal vector is related. Therefore, the upper right 3-by-1

vector is the partial derivative of the projected normal vec-

tor with respect to one element i in the small increment εi.
Repeatedly finding the partial derivative over all the dimen-

sions in the motion vector space leads to the Jacobian matrix

of the normal vector over the motion vector.

∂

∂τ
(z)∧

∣∣∣∣
τ=0

=

⎡
⎣ ∗ ∂Pu(εi)lc

∂εi

∣∣∣∣
εi=0

0� 0

⎤
⎦ (21)

Now we can write down the 3-by-6 Jacobian matrix for

the normal vector in equation (22). Applying the chain rule

of the partial derivative, we get the Jacobian matrix of the

whole system combining equations (13,14,22). The partial

derivative of the reprojected line over the 6 DoFmotion vec-

tor is shown in equation (23). Noticing that the rigid motion

has 6 degree of freedom while each line correspondence

gives 2 constraint equation, we conclude that our method

needs at least 3 lines to calculate the rigid motion, which is

the minimal because there is no redundant parameter.

∂uc
∂ε

=
∂Pu(ε)lc
∂ε

∣∣∣∣
ε=0

=
[−[vc]× −[uc]×

]
(22)

J =
1

l̃i(3)

⎡
⎣1 0 − l̃i(1)

l̃i(3)

0 1 − l̃i(2)
l̃i(3)

⎤
⎦K−� [−[vc]× −[uc]×

]

(23)

From the residual error and the Jacobian matrix, we can

calculate the small increment of the rigid motion vector ε
according to the Gauss-Newton incremental update calcu-

lation equation(12). Then the motion vector is updated with

the exponential function in SE3 as equation (24). It shows
that we actually update the motion in the Euclidean space

in order to simplify computation.

T (ξk+1) = exp(ε)T (ξk) (24)

Our method aims at applications of SLAM, which as-

sumes successive frames don’t have much change in posi-

tion. So we set the first initial position as the same of the

world frame, a zero vector in the 6D space. The algorithm

will search by the gradient-descending direction until the

gradient is small enough. Usually it converges to the result

with less than 10 iterations.

4. Experimental evaluation

4.1. Synthetic lines

Experiments on simulated lines are conducted to test

our methods accuracy, speed and robustness. Monte Carlo

method is adopted to generate random lines in the 3D space.

Then we generate a random rigid motion to transform those

lines to the camera coordinates. At last, we use the camera

intrinsic matrix of an industrial camera in our lab to serve

as the virtual camera to project the 3D lines onto the image

plane. We set the camera resolution as VGA(640*480) and

the focal length as 800 pixels. The distance between the

camera and the center of the random lines is set to 2 meters.

To test the robustness of our method, Gaussian distributed

image noises in different standard deviations were tried.

950

4.1.1 Test under noisy simulation

In order to test the accuracy and the robustness of our

algorithm, we have repeated the random test 100 times un-

der each image noise level in the interval of 0.1 pixel within

2.1 pixels respectively. The sigma is the standard deviation

of the image noise, which served to perturb the endpoints

of the lines. The translation error ΔT is calculated as the

distance from the gorundtruth position T to the estimated

position T ′ as equation (25). To estimate the rotation error,
we first get the rotation difference matrix ΔR calculated

as equation (26). And then the rotation difference matrix

is converted into an rotation error angle according to Ro-

drigues’ rotation formula [20].

ΔT 2 = ‖T − T ′‖2 (25)

ΔR = R�R′ (26)

The test results on random line pairs are shown in the

Fig. 3. From the figure we can see that the error grows with

the image noise. The median translation error is about 1 cm

under the noise sigma of 2 pixels. And the largest transla-

tion error is smaller than 4 cm. Our methods position error

under sub-pixel image noise is less than 2 cm. The rotation

error is always smaller than 0.4◦, showing a high accuracy
of orientation estimation. In general, our method has a good

accuracy dealing with the noisy images. However, under

the noise-free case, our algorithm comes up with the accu-

rate result even with a minimal set of 3 matching pairs of

lines.

���

�	�

Figure 3. Translation(a) and rotation(b) errors under noisy simula-

tions

4.1.2 Comparison with the state-of-the-arts

To further compare the accuracy and robustness of our

method with the state-of-the-arts, we repeated random ex-

periments in the same noise level of 2 pixels. As far as

we are concerned, there isn’t a strict non-linear optimiza-

tion method for pose estimation using lines. So we ap-

plied 5 other non-iterative methods to compare. The box-

plot of the error distribution were drawn to show the perfor-

mance of the algorithms under the same data set. Here are 5

well-developed algebraic methods which estimate the cam-

era pose by finding the solution of Direct Linear Transform

(DLT) or the polynomials from the constraints.

Ansar developed a method dealing with no less than 4

lines with a single solution by using lifting method [21].

In his paper, he applied a para-perspective method to solv-

ing the pose problem with only one solution. And the non-

linear method is more robust than the linear methods when

noise exists both theoretically and experimentally. How-

ever, it has a high computational complexity of O(n2),
where n is the number of lines.
To achieve a more computationally efficient O(n)

method, Mirzaei proposed a method able to handle with

minimum 3 lines. The result comes from 27 candidate so-

lutions of polynomials [22]. Slow construction of the poly-

nomials makes the method running at a high computational

time. For example, it spends 78 ms dealing with 10 lines

while our method finishes within 8 ms.

Also there are methods exploiting the linear formu-

lation of the problem, called LPnL. LPnL Bar LS [12]

uses barycentric coordinates depending on 4 arbitrarily dis-

tributed control points. Similar to the EPnP [8] method,

such method aligns the control points in camera and world

frame to estimate the camera pose. The linear-formulation

based method also aims at large line correspondences.

Pribyl proposed a DLT method [10] using plücker co-

ordinates coping with large line sets. It solves the same

equataion (5) as in our method. However, the DLT-Plucker

method treats the line projection matrix Pu as 18 variables
to solve independently. Then a SVD is used to decompose

the matrix to get 4 possible solutions as the decomposition

of the Essential matrix in multiple view problem. Also ad-

ditional validation step is needed to determine the solution.

This method requires at least 9 lines as each line provides 2

equations.

Recently, Pribyl improved the DLT line method with a

novel DLT-Combined Lines method [18]. It utilizes the 2D

line structure and both structures in 3D lines and points.

The minimum required line pairs is reduced to 5. How-

ever, the method is more suitable for large line sets. All

of the above mentioned method were tested along with our

method under the same noisy level(sigma = 2 pixels) in

a small rigid motion to ensure a converged result of our

method. The comparative results is shown in the Fig. 4. As

951

shown in the Fig.4, under our test random line sets and rigid

transforms, the recent developed methods of LPnL Bar LS,

DLT-plücker, DLT-combined and ours have more robust and

accurate performances in both orientation and position es-

timation. The Ansar’s and Mirzaei’s methods are too sen-

sitive to noises, leading to an unstable output. In addition,

among the above methods, Mirzaei’s is the only one that

works with 3 line pairs. But it doesn’t have a converged

result with noise existing. In conclusion, our method has a

performance on par with the state-of-the-arts in both rota-

tion and tranlation estimation while only our algorithm can

work with only 3 noisy matching line pairs.

���

�	�

Figure 4. Boxplot of translation(a) and rotation(b) errorsrotation

with different methods

4.2. Experiments on real-world images

Besides simulation experiments, we also test our method

on real images of indoor scenes. The VGG corridor dataset

is tried with our algorithm to do pose estimation. The

dataset includes the coordinates of the starting and ending

points of the 3D lines in the world coordinates and the cor-

responding image points of the 2D lines on the image plane.

Also the calibrated intrinsics parameters are given in the

matrix K. Each image has an associated camera projec-
tion matrix Pc which encodes the cameras pinhole model
and its estimated pose[13] as equation (27). The decom-

posed rotation matrixR and translation vector t are used as
the groundtruth.

Pc =K
[
R t

]
(27)

To test our methods accuracy intuitively, we draw the

3D lines reprojections onto the 2D image plane from both

the groundtruth camera pose and the estimated pose of our

method respectively. The result is shown in Fig.5 where

our estimated pose has a 4 cm position error and 0.04◦ ro-
tation error. From the figure we can see that the estimated

lines recovers very well despite some endpoints don’t match

strictly. However, as the unmatched endpoints still lay at

the same line, they still make a good reconstruction of the

2D lines on the image plane. In addition, as the 2D lines are

represented by non-homogeneous coordinates, points on the

same line will make an identical line expression regardless

of the relative position of the line.

���

�	�

Figure 5. Groundtruth (a) of the lines projection and the estimated

lines (b) of our method on the image

952

���

�	�

Figure 6. Reconstructed trajectory of the VGG datasets:(a)Image sequence of the corridor,(b) Reconstructed 3D trajectory in blue and

groundtruth trajectory in red

From the VGG dataset we can also estimate the cam-

eras trajectory from the image sequence as shown in Fig.6.

Motion-only BAmethod is applied to estimate the pose con-

tinuously. It is assumed that successive frames won’t have

a great pose change. So the pose of last framethe is set as

the initial pose guess of the consecutive frame. The average

runtime spent on our algorithm is 10ms on the Matlab plat-

form. Implementation on other platform can well accelerate

the method.

As illustrated in the Fig.6, the red line is the decomposed

trajectory while the blue one is our estimation. The world

coordinates are also shown in the left. We have an estima-

tion very close to the groundtruth. After the camera has

a motion of 9.19m, we have only got the position error of

0.066m. Considering the rotation error, we get an average

rotation error of 0.0045◦, showing an accurate direction de-
termination.

5. Conclusion and Futurework

In general, this article presents a new iterative non-linear

method making fully consideration of the orthonormality

constraints to continuously estimate the pose of the camera

for SLAM applications. For the first time the minimal rep-

resentation of the rigid motion in a 6 DoF vector is used

in the optimized problem using lines, which makes the so-

lution unique and in the orthonormal space. Also we have

fully utilized the constraints from known lines correspon-

dences, which makes our method work with at least 3 lines.

To apply the non-linear optimized method, we deduct the

partial derivatives from the adjoint map of the Lie Group

and build up a novel complete Gaussian-Newton optimizing

system. Experiments have validated the method to be accu-

rate, fast and robust. Aiming at the SLAM applications, our

method deals well with the indoor situation to continously

estimate pose based on small sets of line correspondences.

953

Furthermore, there are still works to do in the future.

First, as a non-linear optimization method, the proposed

algorithm needs a good initial guess. A bad initialization

will certainly lead to diverging iterations. The converging

conditions should be further learned. How the initial pose

estimation will affect the final result should be researched

carefully. In addition, in the real-world SLAM applications,

line pairs are never perfectly matched. It is necessary to add

robust methods like RANSAC to tackle the outliers’ prob-

lem.

6. Acknowledgement

This work was supported by the National Natural Sci-

ence Foundation of China (No. 61471123) and the Nat-

ural Science Foundation of Guangdong Province (No.

2015A030313639).

References
[1] M. Chandraker, J. Lim, and D. Kriegman, “Moving in

stereo: Efficient structure and motion using lines,” in Com-
puter Vision, 2009 IEEE 12th International Conference on,
pp. 1741–1748, IEEE, 2009.

[2] A. Bartoli and P. Sturm, “Structure-from-motion using lines:

Representation, triangulation, and bundle adjustment,” Com-
puter Vision Image Understanding, vol. 100, no. 3, pp. 416–
441, 2005.

[3] C. J. Taylor and D. Kriegman, “Structure and motion from

line segments in multiple images,” Pattern Analysis Machine
Intelligence IEEE Transactions on, vol. 17, no. 11, pp. 1021–
1032, 1995.

[4] L. Zhuang, Y. Han, Y. Fan, Y. Cao, B. Wang, and Q. Zhang,

“Method of pose estimation for uav landing,” Chin. Opt. Lett,
vol. 10, p. S20401, 2012.

[5] G. Zhang, J. H. Lee, J. Lim, and I. H. Suh, “Building a 3-

d line-based map using stereo slam,” IEEE Transactions on
Robotics, vol. 31, no. 6, pp. 1364–1377, 2015.

[6] T. Lemaire and S. Lacroix, “Monocular-vision based slam

using line segments,” in Proceedings 2007 IEEE Interna-
tional Conference on Robotics and Automation, pp. 2791–
2796, April 2007.

[7] H. Zhou, D. Zou, L. Pei, R. Ying, P. Liu, and W. Yu, “Struct-

slam: Visual slamwith building structure lines,” IEEE Trans-
actions on Vehicular Technology, vol. 64, pp. 1364–1375,
April 2015.

[8] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accu-

rate o (n) solution to the pnp problem,” International journal
of computer vision, vol. 81, no. 2, pp. 155–166, 2009.

[9] F. Zhou, Y. Cao, and X. Wang, “Fast and resource-efficient

hardware implementation of modified line segment detec-

tor,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. PP, no. 99, pp. 1–1, 2017.

[10] B. Pibyl, P. Zemk, and M. adk, “Camera pose estimation

from lines using plcker coordinates,” in British Machine Vi-
sion Conference, 2015.

[11] L. Zhang, C. Xu, K. M. Lee, and R. Koch, “Robust and effi-

cient pose estimation from line correspondences,” in ACCV,
pp. 217–230, 2012.

[12] C. Xu, L. Zhang, L. Cheng, and R. Koch, “Pose estimation

from line correspondences: A complete analysis and a series

of solutions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, pp. 1209–1222, June 2017.

[13] A. Hanson, “Robust methods for estimating pose and a sen-

sitivity analysis,” vol. 60, 12 1994.

[14] X. Zhang, X. Sun, Y. Yuan, Z. Zhu, and Q. Yu, “Iterative

determination of camera pose from line features,” ISPRS-
International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, pp. 81–86, 2012.

[15] J. Hilgert and K. H. Neeb, Structure and Geometry of Lie
Groups. Springer New York, 2012.

[16] H. Strasdat, “Local accuracy and global consistency for effi-

cient slam,” 2012.

[17] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-

slam: a versatile and accurate monocular slam system,” IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,
2015.

[18] B. Pibyl, P. Zemk, and M. adk, “Absolute pose estimation

from line correspondences using direct linear transforma-

tion,” Computer Vision and Image Understanding, vol. 161,
pp. 130 – 144, 2017.

[19] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision. Cambridge university press, 2003.

[20] R. M. Murray, S. S. Sastry, and Z. Li, A Mathematical Intro-
duction to Robotic Manipulation. CRC Press, Inc., 1994.

[21] A. Ansar and K. Daniilidis, “Linear pose estimation from

points or lines,” Pattern Analysis Machine Intelligence IEEE
Transactions on, vol. 25, no. 5, pp. 578–589, 2002.

[22] F. M. Mirzaei and S. I. Roumeliotis, “Globally optimal pose

estimation from line correspondences,” in IEEE Interna-
tional Conference on Robotics and Automation, pp. 5581–
5588, 2011.

954

